一个专注音视频领域问答的小圈子

在前面的文章中介绍了 OpenGL 的环境光散射光,现在就是最后一个镜面光了。

还是先理解一下什么是镜面光:

就如同使用我们使用镜子反射太阳光一样,在现实世界中,当光滑表面被照射时会有方向很集中的反射光,这就是镜面光。

与散射光最终强度仅依赖于入射光和被照射点法向量的夹角不同,镜面光的最终强度还依赖于观察者的位置,也就是说,如果从摄像机到被照射点的向量不在反射光方向集中的范围内,观察者将不会看到镜面光,就如上图所示。

接下来就是镜面光的照射计算公式:

镜面光照射结果 =

$材质的反射系数 * 镜面光强度 * max(0,(cos(半向量与法向量的夹角)^{粗糙度}$)

在实际开发中,镜面光照射结果分为两步进行:

镜面光最终强度 =

$镜面光强度 * max(0,(cos(半向量与法向量的夹角)^{粗糙度}$)

镜面光照射结果 = 材质反射系数 * 镜面光最终强度

其中:材质的反射系数实际指的就是物体被照射处的颜色,镜面光强度指的是镜面光中 RGB(红、绿、蓝)3 个色彩通道的强度。

与计算散射光公式不同的是,计算余弦值时对应的角不再是入射角,而是半向量和法向量的夹角。其中,半向量指的是从被照射点到光源的向量与从被照射点到观察点向量的平均向量。

半向量的图示如下:

其中,V 表示从被照射点到观察点的向量,N 为被照射点表面法向量,H 为半向量,L 为从被照射点到光源的向量。

可以看到,向量 V 和向量 L 有共同交点 P ,所以它们在同一平面,而向量 H 是向量 V 和向量 L 的平均向量,所以向量 H 、V、L 共面,并且向量 H 和向量 V、L 的夹角相等。

因此计算向量 H ,首先需要将向量 V 和向量 L 归一化,然后将归一化的向量 V 和 L 求和并再次归一化即可得到向量 H 。

有了半向量 H 之后,计算其和法向量的余弦值就和在镜面光中提到的一样,进行点积就好了。

除此之外,还有一个要考虑的就是物体的粗糙程度,物体越粗糙,镜面光面积越小,反之镜面光面积越大,这也挺符合现实世界的,毛毯的反射光肯定没有玻璃的反射光大。

实践

加入镜面光对程序的影响主要还是在着色器代码上。

对于片段着色器,依旧变化不大,主要的计算工作在顶点着色器,顶点着色器计算完最后镜面光照射强度之后,直接传递给片段着色器就好了。

#version 300 es
precision mediump float;
uniform float uR;
in vec3 vPosition;//接收从顶点着色器过来的顶点位置
in vec4 vDiffuse;//接收从顶点着色器过来的镜面光最终强度
out vec4 fragColor;
void main()
{
   // 省略一些代码
   //最终颜色
   vec4 finalColor=vec4(color,0);
   //根据镜面光最终强度计算片元的最终颜色值
   fragColor=finalColor*vDiffuse;
}

重点依旧是顶点着色器:

#version 300 es
uniform mat4 uMVPMatrix; 	//总变换矩阵
uniform mat4 uMMatrix; 		//变换矩阵
uniform vec3 uLightLocation;	//光源位置
uniform vec3 uCamera;		//摄像机位置
in vec3 aPosition;  	//顶点位置
in vec3 aNormal;   	//法向量
out vec3 vPosition;		//用于传递给片元着色器的顶点位置
out vec4 vSpecular;		//用于传递给片元着色器的镜面光最终强度

void pointLight(				//定位光光照计算的方法
  in vec3 normal,			//法向量
  inout vec4 specular,		//镜面光最终强度
  in vec3 lightLocation,		//光源位置
  in vec4 lightSpecular		//镜面光强度
){
  vec3 normalTarget=aPosition+normal; 	//计算变换后的法向量
  vec3 newNormal=(uMMatrix*vec4(normalTarget,1)).xyz-(uMMatrix*vec4(aPosition,1)).xyz;
  newNormal=normalize(newNormal);  	//对法向量归一化
  //计算从表面点到摄像机的向量
  vec3 eye= normalize(uCamera-(uMMatrix*vec4(aPosition,1)).xyz);
  //计算从表面点到光源位置的向量vp
  vec3 vp= normalize(lightLocation-(uMMatrix*vec4(aPosition,1)).xyz);
  vp=normalize(vp);//格式化vp
  vec3 halfVector=normalize(vp+eye);	//求视线与光线的半向量
  // 物体表面的光滑度,自己拟定为 50.0
  float shininess=50.0;				//粗糙度,越小越光滑

  float nDotViewHalfVector=dot(newNormal,halfVector);			//法线与半向量的点积
  float powerFactor=max(0.0,pow(nDotViewHalfVector,shininess)); 	//镜面反射光强度因子

  specular=lightSpecular*powerFactor;    //最终的镜面光强度
}

void main()  {
   gl_Position = uMVPMatrix * vec4(aPosition,1); //根据总变换矩阵计算此次绘制此顶点的位置
   vec4 specularTemp=vec4(0.0,0.0,0.0,0.0);
   pointLight(normalize(aNormal), specularTemp, uLightLocation, vec4(0.7,0.7,0.7,1.0));//计算镜面光
   vSpecular=specularTemp;	//将最终镜面光强度传给片元着色器
   vPosition = aPosition; 		//将顶点的位置传给片元着色器
}

在散射光,我们需要传递光源的位置,而在镜面光中,不仅仅是光源的位置,还需要把相机的位置传递给着色器代码用于计算。

在顶点着色器代码中,还是定义了一个函数 pointLight 用于计算镜面光照射强度。

由于法向量的基于物体模型空间定义的,首先还是要将法向量转换到世界模型空间中。

  vec3 normalTarget=aPosition+normal; 	//计算变换后的法向量
  vec3 newNormal=(uMMatrix*vec4(normalTarget,1)).xyz-(uMMatrix*vec4(aPosition,1)).xyz;

其次将法向量归一化,然后计算物体表面的点到观察点相机的向量、计算物体表面的点到光源位置的向量,并将这两个向量也进行归一化。

  newNormal=normalize(newNormal);  	//对法向量归一化
  //计算从表面点到摄像机的向量
  vec3 eye= normalize(uCamera-(uMMatrix*vec4(aPosition,1)).xyz);
  //计算从表面点到光源位置的向量vp
  vec3 vp= normalize(lightLocation-(uMMatrix*vec4(aPosition,1)).xyz);
  vp=normalize(vp);//归一化vp

得到这三个向量归一化之后的向量,相对于就是在为接下来的计算做准备了。

首先是得到半向量,并将它归一化,接着就是求半向量和法向量的点积,得到余弦值。

  vec3 halfVector=normalize(vp+eye);	//求视线与光线的半向量
  float nDotViewHalfVector=dot(newNormal,halfVector);			//法线与半向量的点积

然后就是计算余弦值与物体表面粗糙因子的平方,并和 0 进行比较,若小于 0,则为 0 ,最后得到的是镜面反射光强度因子。

  // 物体表面的光滑度,自己拟定为 50.0
  float shininess=50.0;				//粗糙度,越小越光滑
  float powerFactor=max(0.0,pow(nDotViewHalfVector,shininess)); 	//镜面反射光强度因子

将反射光强度因子和镜面光强度相乘,得到最终的镜面光强度,这个强度就是用来传递给片段着色器的最终镜面光强度。

使用效果如下:

镜面光使用

如果我们改变自己拟定的物体粗糙度,粗糙度越大,会使得镜面光面积越小,粗糙度越小,会使得镜面光面积越大。

同时,拖动滑块,改变光源的位置,也会影响镜面光反射的地方,镜面光也受光源的影响。

具体的示例代码可以参考我的 Github 项目,求一波 Star 。

https://github.com/glumes/AndroidOpenGLTutorial

参考

  1. 《OpenGL ES 3.x 游戏开发》

知识星球

一个专注音视频领域问答的小圈子

公众号音视频开发进阶对应的知识星球,一个编程开发领域的专业圈子,贩卖知识和技巧!

※ 入群须知:了解该星球能提供的价值和帮助,在提问时务必阐述好背景,附带相关的信息。

iOS 用户可以加我微信 ezglumes 邀请你进星球,有疑问也可以加我微信咨询。

※ 星球内容:

基础教程:

在知识星球连载的干货教程,可以在专栏中找到,随着时间的推移,教程也会越来越多:

- 音视频基础概念
- WebRTC 入门教程及源码实践
- 播放器教程及源码实践
- OpenGL 和特效开发教程
- Vulkan 入门教程

部分内容可以在博客 https://glumes.com 中检索到,后面会在星球里持续更新.

干货分享:

涵盖了移动开发和音视频工程领域的绝大部分,从项目实战角度出发,提升能力,包括但不限于以下领域:

- Android/iOS 移动开发
- Camera 开发
- 短视频编辑 SDK 项目实践
- 在线直播和推流
- WebRTC 开发
- 播放器基础和提高
- OpenGL 图像渲染及特效开发
- C++ 基础和提高
- FFmpeg 使用和分析
- 干货资源和书籍分享

不止于技术方面的,各种 IT 新闻、茶余饭后、生活趣事也欢迎大家分享!!!

技术答疑解惑:

针对上述基础教程和干货分享的答疑,另外还有音视频和 IT 开发中的各种交流讨论。

- 基础知识点答疑
- 工业项目实践答疑
- 问题排查思路分析

一个 BUG 排查很久,不如来星球里提个问题,效率提升百倍。

求职和面试辅导:

一站式职场服务,每份工作都值得用心对待!!!

- 面试题和面试经验分享
- 简历修改和模拟面试
- 大厂内推和信息同步
- 职场经验分享
- 职业规划和发展分析

※ 星主和合伙人介绍

星主是公众号音视频开发进阶的作者,也是网站 https://glumes.com 的作者,曾参与过抖音、剪映等头部音视频 APP 底层 SDK 的开发。

合伙人也是在头条、快手从事音视频架构师的职位,具有多年的音视频开发经验,能力圈覆盖了音视频的绝大多数领域,资深音视频从业人员为你保驾护航。

微信公众号

扫描下面的二维码关注我的微信公众号《音视频开发进阶》,推送更多精彩内容!

添加我的微信 ezglumes 拉你入音视频与图形图像技术群一起交流学习~

wechat-account-qrcode

原创文章,转载请注明来源:    《OpenGL ES 3.x 游戏开发》光照系列之镜面光